Table S28. Expression of cutin biosynthesis-related transcripts during sweet pitaya fruit development normalized with four normalization strategies. Relative expression (RE) was calculated through the $2^{-\Delta\Delta Ct}$ method using elongation factor 1-alpha (StEF1a), alpha-tubulin (StTUA), polyubiquitin 3 (StUBQ3), and StEF1a+StTUA as normalizing genes using the 10 DAF (days after flowering) stage as calibrator. Data represent the mean \pm standard error (SE) of each developmental stage (n = 4-6). Different letters denote significant differences (Tukey HSD test, p < 0.05) between developmental stages in DAF. Statistical analysis was carried out through stats packages in R Studio. The Ct data for the analysis was recorded by qRT-PCR in a QIAquant 96 5 plex (QIAGEN) according to the manufacturer's protocol. Abbreviations: Cytochrome p450 family 77 subfamily A (StCYP77A), Gly-Asp-Ser-Leu motif lipase/esterase 1 (StGDSL1), and ATP binding cassette transporter family G member 11 (StABCG11). S. thurberi transcripts identified in this study were designated with the prefix "St" and the name of their best homologous match from other plant species.

Transcript	Stage	Normalizer			
	(DAF)	StEF1a	StEF1a+StTUA	StTUA	StUBQ3
		$(RE \pm SE)$	$(RE \pm SE)$	$(RE \pm SE)$	$(RE \pm SE)$
StCYP77A	10	1.019 ± 0.099^a	1.005 ± 0.043^{a}	1.007 ± 0.051^{a}	1.005 ± 0.045^{a}
	20	1.450 ± 0.116^{b}	1.248 ± 0.028^{b}	1.361 ± 0.156^{b}	1.174 ± 0.073^{a}
	30	0.554 ± 0.035^{c}	0.448 ± 0.047^{c}	$0.291 \pm 0.025^{\circ}$	0.166 ± 0.026^{b}
	35	0.657 ± 0.058^{c}	0.558 ± 0.038^{c}	$0.551 \pm 0.025^{\circ}$	0.487 ± 0.081^{c}
	40	0.740 ± 0.072^{ac}	$0.575 \pm 0.069^{\circ}$	$0.566 \pm 0.075^{\circ}$	0.527 ± 0.099^{c}
StGDSL1	10	1.036 ± 0.139^a	0.990 ± 0.093^{a}	1.029 ± 0.128^{a}	1.012 ± 0.081^{a}
	20	1.364 ± 0.151^{a}	1.062 ± 0.091^{a}	1.009 ± 0.063^{a}	0.986 ± 0.056^{a}
	30	0.383 ± 0.056^{b}	0.239 ± 0.045^{b}	0.204 ± 0.033^{b}	0.111 ± 0.027^{b}
	35	0.166 ± 0.016^{b}	0.174 ± 0.029^{b}	0.196 ± 0.031^{b}	0.113 ± 0.012^{b}
	40	0.288 ± 0.044^{b}	0.218 ± 0.033^{b}	0.145 ± 0.023^{b}	0.177 ± 0.038^{b}
StABCG11	10	1.007 ± 0.063^{ab}	1.008 ± 0.057^{ab}	1.007 ± 0.052^{a}	1.007 ± 0.053^{a}
	20	1.497 ± 0.187^{ac}	1.413 ± 0.153^{a}	1.254 ± 0.128^{a}	1.316 ± 0.076^{a}
	30	0.777 ± 0.060^{b}	0.463 ± 0.074^{c}	0.599 ± 0.109^{b}	0.322 ± 0.072^{b}
	35	0.564 ± 0.064^{b}	0.721 ± 0.082^{bc}	0.276 ± 0.051^{b}	0.337 ± 0.075^{b}
	40	$1.553 \pm 0.114^{\circ}$	1.216 ± 0.090^{a}	1.009 ± 0.043^{a}	1.314 ± 0.159^{a}