Table S1 Reported PFOS concentrations in the soil in African continent.

Concentration				
Locations	Prefix	s (ng/g)	Source of contamination	Reference
Uganda	UG1	0.60-3.00	Wastewater management	[1]
			from treatment plants	
Mabira Forest	UG2	0.01664	Atmospheric deposition	[2]
Reserve, Uganda			(LRT), urban runoff	
Nigeria	NG1	0.05-5.00	Solid waste dumpsites/	[3]
			municipal waste	
Jos, Nigeria	NG2	0.14	Atmospheric deposition	[2]
			(LRT)	
Kenya	KE	57.50	Nairobi river water	[4]
Ghana	GH	2.60-275.30	Electronic wastes	[5]
Cape Town,	SA1	248.14	Contamination from river	[6]
South Africa			water	
South Africa	SA2	0.12-1.49	Atmospheric deposition	[2]
Mapunguwe	SA3	0.00	Atmospheric deposition	[2]
National Park,				
South Africa				
Buea, Cameroon	CM1	0.01422	Urbanization	[2]
Edea, Cameroon	CM2	0.09059	Urbanization	[2]

Table S2 Reported concentrations of PFOS in plants across Africa (LOD-below level of detection).

Country	Plant	Concentration (ng/g)	Source of Contamination	Reference
Kenya	General plants along Nairobi River basin	29.33	Multi-industry contamination of river water	[4]
South Africa	Medicinal plants (Tagetes erecta L.)	5.03	Irrigation with contaminated river water	[7]
Western Cape, South Africa	Riparian wetland Plants (Reeds)	<lod< th=""><th>Contaminated river water and sediments</th><th>[7]</th></lod<>	Contaminated river water and sediments	[7]
Ghana	Plants irrigated with wastewater	0.05-4.5	Waste treatment plants and landfills	[8]
Uganda	Maize cobs (Zea mays)	0.16	Contaminated water from Nakivubo wetland	[1]
Uganda	Sugarcane stems (Saccharum officinarum)	0.38	Contaminated water from Nakivubo wetland	[1]

References

8

- 9 [1] Dalahmeh S, Tirgani S, Komakech AJ, Niwagaba CB, Ahrens L. 2018. Per- and
- polyfluoroalkyl substances (PFASs) in water, soil and plants in wetlands and agricultural
- areas in Kampala, Uganda. Science of the Total Environment 631-632:660–667
- 12 [2] Rankin K, Mabury SA, Jenkins TM, Washington JW. 2016. A North American and global
- survey of perfluoroalkyl substances in surface soils: distribution patterns and mode of
- occurrence. *Chemosphere* 161:333–341
- 15 [3] Ibor OR, Andem AB, Eni GG, Arong A, Adeougn AO, et al. 2020. Contaminant levels and
- endocrine disruptive effects in *Clarias gariepinus* exposed to simulated leachate from a
- solid waste dumpsite in Calabar, Nigeria. *Aquatic Toxicology* 219:105375
- 18 [4] Chirikona F, Quinete N, Gonzalez J, Mutua G, Kimosop S, et al. 2022. Occurrence and
- distribution of per- and polyfluoroalkyl substances from multi-Industry sources to water,
- sediments and plants along Nairobi River Basin, Kenya. International Journal of
- 21 Environmental Research and Public Health 19(15):8980
- 22 [5] Eze CT, Otitoloju AA, Eze OO, Ugochukwu TE, Onodugo C, et al. 2023. West African
- e-waste-soil assessed with a battery of cell-based bioassays. Science of the Total
- 24 Environment 856(1):159068
- 25 [6] Umejuru EC, Street R, Edokpayi JN. 2024. A comprehensive review of the occurrence,
- distribution, characteristics and fate of per- and polyfluoroalkyl substances in the African
- 27 continent. Chemistry Africa 7:4089–4103
- 28 [7] Mudumbi JB, Ntwampe SK, Muganza FM, Okonkwo JO. 2014. Perfluorooctanoate and

- 29 perfluorooctane sulfonate in South African river water. Water Science and Technology
- 30 69(1):185–194
- 31 [8] Ahrens L. 2011. Polyfluoroalkyl compounds in the aquatic environment: a review of their
- occurrence and fate. *Journal of Environmental Monitoring* 13(1):20–31