Materials and Methods

Materials and Phenotypes
We analyzed four publicly available wheat RNA-seq datasets (Table S1), comprising 1,373 samples in total. The data originated from distinct tissues and developmental stages: (1) ground tissue of 2-week-old plants[1] (Plant panel), (2) leaves at the three-leaf stage seedling[2] (Seedling panel), (3) the second or third seedling leaf[3] (Leaf panel), and (4) roots harvested 14 days after germination[4] (Root panel).
For phenotype, plant height data were obtained from a previous study[5] (Liu et al., 2023). The plants were cultivated in Yangling (34.28°N, 108.07°E) during the 2018 growing season. The mean value from three replicates was used for each accession.
Gene Expression 
Raw RNA-seq reads underwent quality control using Trimmomatic[6] (v0.36) with parameters: LEADING:15, TRAILING:15, SLIDINGWINDOW:4:20, MINLEN:100. High-quality reads were aligned to the wheat reference genome[7] (Chinese Spring v2.1) using STAR[8]. Uniquely mapped reads were assigned to annotated high-confidence (HC) and low-confidence (LC) genes using featureCounts[9]. Gene expression values were normalized using the transcripts per kilobase million (TPM) method. For each panel, genes with an average raw read count ≥ 20 and an average TPM> 0.1 were classified as expressed and retained for downstream analysis. Uniform Manifold Approximation and Projection (UMAP) analysis was performed in R using the uwot package on the gene expression matrix of 1,373 samples. Only genes with an average expression >0.1 TPM across all samples were included. The two-dimensional embedding was generated using Euclidean distance with default parameters.
Genotyping 
For each panel, single-nucleotide polymorphisms (SNPs) were called and filtered independently. Variant calling was performed using the standard RNA-seq pipeline of Sentieon® Genomics software (v202308.01). Raw SNPs were filtered in two stages: first, at the sample level to remove samples with high heterozygosity (≥30%) or high missing data (≥50%); second, at the SNP level, retaining only biallelic SNPs that met the following criteria: minor allele frequency (MAF) ≥ 5%, missing rate ≤ 50%, and a minimum of 10 samples homozygous for the minor allele. The resulting high-confidence SNP set was imputed using Beagle[10-11] (v5.0) for subsequent analysis. The predicted functional impact of each SNP was annotated using SnpEff[12] (v4.3t). LD between SNPs was calculated using PLINK[13] (v1.9), and nucleotide diversity (π) and Cockerham’s FST[14] (Weir and Cockerham, 1984) between populations and nucleotide diversity of a population were calculated using VCFtools[15] (V0.1.17).
Phylogenetic Tree 
A set of SNPs shared across all four panels was first pruned using PLINK[13] (v1.9) to remove redundant variants. A maximum-likelihood phylogenetic tree was constructed from this pruned SNP set using SNPhylo[16] (v20180901). 
Genome-Wide Association Study (GWAS)
For plant height GWAS among the Root panel, SNPs were filtered to include only those with a minor allele frequency (MAF) > 5% in individuals with both genotype and phenotype data. The analysis was performed using a compressed mixed linear model[17] (CMLM) and FarmCPU model[18] implemented in GAPIT[19] (v3.1), with the first three principal components from a genotype PCA included as covariates to control for population structure. Resulting P values were adjusted using a Bonferroni correction at α = 0.1 to define significant trait-associated SNPs. 
Expression Quantitative Trait Loci (eQTL)  
eQTL mapping was performed independently for each panel. Expression levels of all genes were normalized across samples via a quantile transformation to a standard normal distribution using the qqnorm function in R (v4.1.2). For each gene, a GWAS was conducted using the FarmCPU model[18] to identify significantly associated SNPs. To account for potential confounding factors, the first three PCs derived from the normalized expression matrix were included as covariates to control for non-genetic batch effects[20], and the first three PCs from the genotypic data were included to correct for population structure. An eQTL was classified as cis if the physical distance between its lead SNP and the target gene was less than 10 Mb; all other associations were classified as trans. Given the substantial difference in the multiple-testing burden between cis (local) and trans (genome-wide), distinct significance thresholds were applied. A p value cutoff of 1 × 10⁻⁶ was used for cis-eQTL. For trans-eQTL, a Bonferroni correction was applied at α = 0.01 to define genome-wide significance.
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