Supplementary Table S1: The hyperparameters learned through training and the description for different models using Arabidopsis Training Data

Model	Parameter tuned	Description
Logistic Regression	penalty: 12, C: 1, solver: saga, max iterations: 500	Penalty is a regularization parameter; C is the inverse of regularization strength; solver is the optimization algorithm; max iterations define the number of iterations the algorithm performs on data
Support Vector Machine	C: 0.5, kernel: linear, gamma: scale, degree: 4	C is the regularization parameter; kernel function is used to map data to higher dimensions; gamma controls the shape of the decision boundary; degree defines degree of the polynomial
Decision Tree	criterion: gini, min samples leaf: 5, min samples split: 5	Criterion is used to measure the quality of the split; min samples leaf is the minimal number of samples in a leaf. min samples split is the minimum number of samples that are required to split a node in tree.
K-Nearest Neighbors	metric: Manhattan, n neighbors: 6	Metric is used to calculate the distance between datapoints; n neighbor defines the number of neighbors considered for prediction
Random Forest	maximum depth: 20, min samples leaf: 5, min samples split: 2, estimators: 50	Maximum depth is the depth of each Decision Tree, min samples leaf is the minimal number of samples in a leaf and min samples split is the minimum number of samples required to split a node in tree, estimators are the number of Decision Trees constructed
Extremely Randomized Trees	maximum depth: 20, min samples leaf: 1, min samples split: 2, estimators: 50	Maximum depth is the depth of each Decision Tree, min samples leaf is the minimal number of samples in a leaf and min samples split is the minimum number of samples required to split a node in tree; estimators are the number of Decision Trees constructed
AdaBoost	estimators: 100, learning rate: 0.1	Estimators value is the number of Decision Trees constructed; learning rate controls the contribution of the weak classifier in final ensemble
Gradient Boosting	estimators: 100, learning rate: 0.1	Estimators value is the number of Decision Trees constructed; learning rate controls the contribution of the weak classifier in final ensemble
Bagging Classifier	estimators: 100, max samples: 10, max features: 1	Estimators value is the number of Decision Trees constructed; max samples define the maximum samples to use for each copy; max features define the maximum features to use for each copy of the model