Table S2 Calculation formula and description of stand structural diversity parameters

	Parameter	Abbreviation	Calculation formula	Description
Non-spatial structure diversity	Coefficient of variation	CV	$CV_{DBH} = \frac{SD_{DBH}}{\overline{DBH}}$	SD_{DBH} represents the standard deviation of DBH; \overline{DBH} denotes the average diameter of the trees in the sample plot. A higher CV indicates a greater degree of tree size differentiation within the stand.
	Skewness of distribution	SK	$SK = \frac{\sum_{i=1}^{n} \left(DBH - \overline{DBH}\right)^{3}}{(n-1)SD_{DBH}^{3}}$	n represents the number of trees in the sample plot, and DBH stands for diameter at breast height. \overline{DBH} is the average diameter of the trees in the sample plot. A higher absolute value of SK indicates a greater degree of size differentiation within the forest.
	Gini coefficient	GC	$GC = \frac{\sum_{i=1}^{n} (2i - n - 1)BA_i}{\sum_{i=1}^{n} BA_i (n - 1)}$	BA_i represents the basal area of a single tree. A GC value of 0 indicates an even distribution of tree sizes. The larger the GC, the more uneven the size or growth between trees. The higher the GC , the more uneven the size or growth between trees.
	Shannon-Weiner index	Н	$H^{'} = -\sum (P_{i}lnP_{i})$	The diameter intervals are set at 5 cm, with DBH ranging from 5 to 65 cm. Pi represents the total number of trees at each diameter level. H' is used to analyze tree size diversity.
Spatial structure diversity	Dominance	U	$U_i = \frac{1}{n} \sum_{j=1}^n K_{ij}$	If the j^{th} neighboring tree is larger than the i^{th} reference tree, $K_{ij} = 1$, otherwise $K_{ij} = 0$. DO describes the relative size of adjacent trees within a community structure unit. Four nearest neighboring trees and a reference tree were selected to form the spatial structure unit (as follows).
	Uniform angle index	W	$W_i = rac{1}{n} \sum_{j=1}^n Z_{ij}$	The W represents the angle between neighbors. If $a < a_0$, $Z_{ij} = 1$; otherwise, $Z_{ij} = 0$. The W index indicates the spatial dispersion of the four nearest neighbors around the reference tree. Higher values indicate a transition from regular to random to clumped spatial patterns patterns.
	Stand Mingling	М	$M_i = \frac{1}{n} \sum_{j=1}^n V_{ij}$	If the j^{th} neighboring tree is not of the same species as the i^{th} reference tree, $V_{ij} = 1$, otherwise, $V_{ij} = 0$. A higher value indicates greater species diversity within the structural unit.
	Crowding index	С	$C_i = \frac{1}{n} \sum_{j=1}^n Y_{ij}$	If the j^{th} neighboring tree's crown is connected to the i^{th} reference tree's crown, $Y_{ij}=1$, otherwise, $Y_{ij}=0$. A higher value indicates greater tree density.