List of Symbols

- *a* Unit of length in simulations (eqs. 14, 15)
- A Area of the membrane
- a_p Parameter defined in Equation 13
- B_j Body force in direction j
- c Concentration of defects in the space of their radii
- C Change of specific capacitance in the region of the defect, specific heat, capacitance of discharge capacitor (from Hulsheger et al., 1983)
- C_0 Specific capacitance of the membrane
- C_n Concentration of species n
- *D* Diffusion coefficient, *D*-value, or time required for a one log cycle reduction in microbiological population
- *d_c* Diameter of cell (Lebovka and Vorobiev model)
- $\overline{d_c}$ Mean diameter of cell (Lebovka and Vorobiev model)
- D_i Diffusion coefficient of species i
- D_n Diffusion coefficient of species n
- *E* Young's modulus (eqs. 1 through 3); energy of the defect (eqs. 6, 10), electric field strength
- E_* Energy of the critical defect, or height of energy barrier
- E_a Activation energy
- E_c Critical electric field strength required for microorganism inactivation.
- *E*_{crit} Critical electric field strength required for microorganism inactivation.
- E_{c0} Constant in Peleg's model
- E_0 Defect energy in the absence of electric field
- *E* Electric field strength
- f fraction of microbial population of a particular resistance
- F Faraday's constant (=96.487 As/mol)
- *f_{rep}* Pulse repetition frequency
- *h* Thickness of bilayer lipid membrane (BLM)
- H Hamiltonian function
- H(r) Heaviside step function, reflecting the fact that only nonconducting pores ($r < r_*$) are being destroyed.
- J Current density
- J_i Current density due to flow of species *i*
- *k* Boltzmann constant, thermal conductivity (in transport equation)

- k_1 Constant in Peleg equation
- k_2 Constant in Peleg equation
- k_1 ' Constant in Peleg equation
- k_2 ' Constant in Peleg equation
- k_c Constant in eqs. 38, 40
- k_{c0} Constant in Peleg's model
- k_{max} reaction rate constant for microbial inactivation (log linear model with tailing)
- k_{max1} reaction rate constant for microbial inactivation for fraction 1
- k_{max2} reaction rate constant for microbial inactivation for fraction 2
- k_t Constant in equation 37
- L Length of material
- <L>Average perimeter length of all pores
- *n* Number of pulses
- n_j Number of pores of radius r_j
- N Number of pores, number of microorganisms
- N_{ni} Molar flux of charged species.
- No Initial population of microorganisms
- N_t Population of microorganisms after a process time t
- N(t) Population of microorganisms after a process time t
- </N> Average number of pores in a membrane
- $N_{\rm res}$ Residual number of microorganisms in a process with tailing (log linear model with tail)
- *p* Pressure, shape parameter in Weibull model (eq. 45)
- r Defect radius
- r_0 Minimum pore radius
- *r** Critical defect radius
- r_j Radius of pore *j* in membrane (equation 11)
- R Resistance of the filled treatment cell, Universal Gas Constant
- R_n Reaction rate of species n
- S(r) Source term for creation and destruction of pores
- S_1 duration of shouldering phase in microbial survivor curve
- t time
- T Temperature, absolute temperature
- T_c Critical temperature when 50% of the population is inactivated (Gauss-Eyring model)

- u''' Volumetric internal energy generation rate
- $u_{m,n}$ Ionic mobility of charged species n
- v_c Attempt rate density.
- v_i Velocity in i direction
- V Voltage, voltage across bilayer lipid membrane (capacitor)
- *V*_{*} Breakdown voltage across membrane
- x_i Coordinate direction
- Y Fractional survival of microbial population, or fractional retention of constituent
- Z Partition function for pores
- z_n Charge number of ionic species n

Greek letters

- $\beta = 1/kT$
- γ Linear tension
- δ Shape parameter in Weibull model (Eq. 45)
- Δ Deformation (change in length) of material
- Δ Standard deviation of cell diameter (Lebovka and Vorobiev model)
- ε Electrical permittivity
- ε_0 Electrical permittivity of vacuum
- κ_m Dielectric constant of membrane
- $\kappa_{\rm w}$ Dielectric constant of water
- μ Chemical potential of pore gas (eq. 12)
- *v*_d Frequency of lipid fluctuations
- ρ Density, charge density
- ρ_i Charge density of species *i*
- σ Surface tension, electrical conductivity
- Width of the temperature distribution (interpreted as a measure of heterogeneity in sensitivity towards temperature resistance) in Gauss-Eyring model.
- σ_i Electrical conductivity of species *i*
- τ Pulse duration, time constant in Eq. 39
- τ_{ij} Stress tensor
- φ Pore energy in the presence of an external potential
- φ_n Electric potential through the electrolyte