Flame retarant	pHRR(kW/m ²) reduction	THR(MJ/m ²) reduction	TSP(m ²) reduction	pCOP(g/s) reduction	Ref.
Mo-MOF	44.7%	2.5%	25.1%	42.9%	[1]
PTDOB	47.1%	22.3%	17.3%	33.3%	[2]
ZIF-8@HCCP	56.2%	13.7%	21.8%	45.7%	[3]
CuPP	51.7%	16.3%	52.4%	47.3%	[4]
EHPP@PA	64.0%	16.0%	21.0%	45.0%	[5]
FePP	42.6%	26.3%	33.3%	49.8%	[6]
P-KC	61.9%	32.8%	27.3%	69.1%	[7]
IL@NH2-MIL-101(A l)	51.2%	14.4%	13.1%	44.8%	[8]
SZF	64.0%	48.2%	48.3%	51.6%	[9]
LMP	45.0%	42.0%	28.2%	45.9%	[10]
PPGO	42.0%	22.0%	24.3%	45.2%	[11]
PMAIL	31.0%	1.0%	15.4%	22.5%	[12]
ZCS	46.8%	21.7%	19.3%	46.2%	[13]
TA-MoS2	38.1%	29.6%	32.6%	34.9%	[14]
a-SEP@LDH	21.0%	/	16.1%	32.4%	[15]
DMMH	54.5%	35.1%	38.1%	21.1%	[16]
UiO66-PDA-PBA	50.0%	/	22.0%	66.0%	[17]
NiPP	35.2%	20.2%	16.2%	45.8%	[18]
PA-DAD	72.2%	28.3%	49.5%	66.5%	This work

Table S4 The fire performances of PA-DAD.

REFERENCES:

- Zhang F, Li X, Yang L, Zhang Y, Zhang M. 2021. A Mo-based metal-organic framework toward improving flame retardancy and smoke suppression of epoxy resin. *Polymers for Advanced Technologies* 32:3266-77
- Chen M, Lin X, Liu C, Zhang H. 2021. An effective strategy to enhance the flame retardancy and mechanical properties of epoxy resin by using hyperbranched flame retardant. *Journal of Materials Science* 56:5956-74
- Meng W, Wu H, Bi X, Huo Z, Wu J, et al. 2021. Synthesis of ZIF-8 with encapsulated hexachlorocyclotriphosphazene and its quenching mechanism for flame-retardant epoxy resin. *Microporous and Mesoporous Materials* 314:

110885

- Kong Q, Wu T, Zhang J, Wang D-Y. 2018. Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. *Composites Science and Technology* 154:136-44
- Fang F, Huo S, Shen H, Ran S, Wang H, et al. 2020. A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins. *Composites Communications* 17:104-08
- 6. Kong Q, Sun Y, Zhang C, Guan H, Zhang J, et al. 2019. Ultrathin iron phenyl phosphonate nanosheets with appropriate thermal stability for improving fire safety in epoxy. *Composites Science and Technology* 182: 107748
- Wang N, Teng H, Li L, Zhang J, Kang P. 2018. Synthesis of Phosphated K-Carrageenan and Its Application for Flame-Retardant Waterborne Epoxy. *Polymers (Basel)* 10(11): 1268
- Huang R, Guo X, Ma S, Xie J, Xu J, Ma J. 2020. Novel
 Phosphorus-Nitrogen-Containing Ionic Liquid Modified Metal-Organic
 Framework as an Effective Flame Retardant for Epoxy Resin. *Polymers* 12 12 (1): 0108
- Xu W, Fan L, Qin Z, Liu Y, Li M. 2021. Silica-coated metal-organic framework-β-FeOOH hybrid for improving the flame retardant and smoke suppressive properties of epoxy resin. *Plastics, Rubber and Composites* 50:396-405
- Liu W, Pan Y-T, Zhang J, Zhang L, Moya JS, et al. 2021. Low-melting phosphate glasses as flame-retardant synergists to epoxy: Barrier effects vs flame retardancy. *Polymer Degradation and Stability* 185: 109495
- Fang F, Ran S, Fang Z, Song P, Wang H. 2019. Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water. *Composites Part B: Engineering* 165:406-16

- Xiao F, Wu K, Luo F, Yao S, Lv M, et al. 2018. Influence of Ionic Liquid-Based Metal–Organic Hybrid on Thermal Degradation, Flame Retardancy, and Smoke Suppression Properties of Epoxy Resin Composites. *Journal of Materials Science* 53: 10135-46
- Xu W, Yan H, Wang G, Qin Z, Fan L, Yang Y. 2021. A silica-coated metal-organic framework/graphite-carbon nitride hybrid for improved fire safety of epoxy resins. *Materials Chemistry and Physics* 258: 123810
- Peng H, Wang D, Fu S. 2020. Tannic acid-assisted green exfoliation and functionalization of MoS2 nanosheets: Significantly improve the mechanical and flame-retardant properties of polyacrylonitrile composite fibers. *Chemical Engineering Journal* 384: 123288
- 15. Zhang H, Hu X, Liu Y, Zhang S, Wu Z. 2021. Convenient synthesis of one-dimensional a-SEP@LDH via self-assembly towards simultaneously improved fire retardance, mechanical strength and thermal resistance for epoxy resin. *Composites Part B: Engineering* 216: 108857
- Zhao P, Zeng W, Yang Z, Yang Y, Li J, et al. 2021. Preparation of a novel functionalized magnesium-based curing agent as an intrinsic flame retardant for epoxy resin. *Chemosphere* 273: 129658
- 17. Zhang J, Li Z, Shao Z-B, Zhang L, Wang D-Y. 2020. Hierarchically tailored hybrids via interfacial-engineering of self-assembled UiO-66 and prussian blue analogue: Novel strategy to impart epoxy high-efficient fire retardancy and smoke suppression. *Chemical Engineering Journal* 400: 125942
- Kong Q, Zhu H, Fan J, Zheng G, Zhang C, et al. 2020. Boosting flame retardancy of epoxy resin composites through incorporating ultrathin nickel phenylphosphate nanosheets. *Journal of Applied Polymer Science* 138(16): 50265